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Mary Rees and BCL

Mary Rees published a paper “A minimal positive entropy
homeomorphism of the 2-torus” in 1980.

In that paper she gave a construction that allowed the
modification of a minimal homeomorphism to suit her
purposes. That construction was intricate and hard to
understand, so in 2011, F. Béguin, S. Crovisier, and F. Le Roux
wrote a 66-page paper, “Construction of curious minimal
uniquely ergodic homeomorphisms on manifolds”, one of whose
goals was to make the Rees construction more accessible.
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Suppose we have a homeomorphism H : T2 → T2.

By a rectangle we mean any subset of T2 homeomorphic to the
unit disc in R2.

Let E ,F be a collection of rectangles. We say that F refines E
if: (a) every element of E contains at least one element of F ;
(b) for elements X ∈ E , Y ∈ F either X ∩ Y = ∅ or
Y ⊂ intX . We define

mesh E = max{diamX : X ∈ E}.
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p-times iterable

Let p ∈ N. A collection of rectangles E is p-times iterable if for
rectangles X ,Y ∈ E and integers −p ≤ k , s ≤ p, ether
Hk(X ) = Hs(Y ) or Hk(X ) ∩ Hs(Y ) = ∅. For any p-times
iterable family of rectangles E and any 0 ≤ n ≤ p,

En =
⋃
|k|≤n

Hk(E),

where as usual H(E) = {H(X ) : X ∈ E}. In particular, E0 = E .
Given an integer 0 ≤ n ≤ p we define an oriented graph
G = G (En), where the vertices are elements of En and there is
an edge from X to Y provided that H(X ) = Y . For n < p we
say that En has no cycle if the graph G (En) has no cycle.
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F is compatible with E for p iterates

For a collection of rectangles E , let us denote by s(E) the union
of all rectangles in E . Fix an integer p ≥ 0 and let E ,F be
collections of rectangles such that E is p-times iterable and F
is (p + 1)-times iterable. Assume additionally that Fp+1 refines
Ep. If for every k such that |k | ≤ 2p + 1, we have
Hk(s(F)) ∩ s(E) ⊂ s(F ), then we say that F is compatible
with E for p iterates.
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main axioms from Béguin, Crovisier, Le Roux

Now we are ready to state the main axioms which are the
building blocks in the construction. Let (En)n∈N0 be a sequence
of collections of rectangles. We introduce the following
hypotheses:

A1 : For every n ∈ N0

an : the collection En is (n + 1)-times iterable and Enn has no
cycle;

bn : the collection En+1
n refines the collection Em+1

m for every
0 ≤ m < n;

cn : the collection En+1 is compatible with En for n + 1
iterates.

A3 : limn→∞mesh Enn = 0.
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the homeomorphisms Mi

Assume that (Mn)n∈N is a sequence of homeomorphisms
Mn : T2 → T2 and that for every n the homeomorphisms Ψn, gn
are defined by:

Ψn = Mn ◦ . . . ◦M2 ◦M1,

gn = Ψ−1n ◦ H ◦Ψn.

Finally we set Ψ0 = id, g0 = H.
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More conditions on the Mn

In addition, assume that the homeomorphisms Mn satisfy the
conditions specified below:

B1 : For every n ∈ N0:

B1,n : The support of the homeomorphism Mn is contained in
the set En−1

n−1 , where as usual the support of the
homeomorphism Mn is defined by
suppMn = {x : Mn(x) 6= x}.

B2 : For every n ∈ N0:

B2,n : The homeomorphisms Mn and H commute along edges
of the graph G (En−1

n−1 ).

B3 : Denote An = En+1
n \ En−1n for every n ∈ N0.

B3,n : The mesh{Ψ−1
n−1(X ) : X ∈ An} < 1/n;

and, in particular,

lim
n→∞

mesh{Ψ−1n−1(X ) : X ∈ An} = 0.
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A lemma

The following fact is [BCL, Proposition 3.1]. It ensures proper
convergence of the constructed functions.

Lemma

Assume that hypotheses A1,3, B1,2,3 are satisfied. Then:

1 The sequence of homeomorphisms (Ψn)n∈N converges
uniformly to a continuous surjective map Ψ: T2 → T2.

2 The sequence of homeomorphisms (gn)n∈N converges
uniformly to a homeomorphism map g : T2 → T2 and
(g−1n )n∈N converge uniformly to its inverse g−1.

3 The homeomorphism g is an extension of H by Ψ, that is,
H ◦Ψ = Ψ ◦ g .
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another lemma

The following is Proposition 3.4 in BCL.

Lemma

Let K =
⋂

n∈N s(En) and assume that hypotheses A1,3, B1,2,3

are satisfied.

1 Fix x ∈ T2 and suppose that there is m ∈ Z such that
x ∈ Hm(K ). Let (Xn)n≥m be the decreasing sequence of
rectangles in Emn containing x . Then

Ψ−1(x) =
⋂
n≥m

Ψ−1n (Xn).

2 For every x which does not belong to the orbit of K the
set Ψ−1(x) is a single point.
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minimal noninvertible pseudocircle map

We wish to construct a minimal map on the pseudocircle which
is not a homeomorphism. The main step of the construction is
the following theorem. We denote the annulus by A.

Theorem

There exists a homeomorphism g : A→ A with an invariant
pseudocircle P ⊂ A such that (g ,P) is minimal and there
exists a pseudoarc A ⊂ P such that lim|n|→∞ diam gn(A) = 0.
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main ideas of the proof of the theorem

Let H : A→ A be the annulus homeomorphism defined by
Handel. In particular, (1) H is a rotation on (both) circles
that form the boundary of A, (2) there exists an essential
pseudocircle P ⊂ A that is a minimal, invariant subset
under H, and (3) every point from the interior of A is
attracted by P.
We can “glue” the boundary of A to a single circle, call it
S , which turns A into T2, and now (our modified)
H : T2 → T2. If we perturb H to a homeomorphism H ′ in
such a way that H and H ′ coincide in a neighborhood of
S , then we can again “cut back” T2 to A obtaining a well
defined homeomorphism H ′ : A→ A.
In particular, if, in a sufficiently small neighborhood of P
there is an H ′-invariant set P ′, which is a hereditarily
indecomposable circlelike continuum, then it must also be
a pseudocircle.
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Step 1. Definition of the maps Mn. To start the
construction, fix a pseudoarc A ⊂ P and a point p ∈ A. There
exists a sequence of rectangles (Un)n∈N, Un+1 ⊂ intUn ⊂ T2

such that
⋂

n∈N Un = A. There also exists a decreasing
sequence of rectangles (Vn)n∈N such that (1) Vn ⊂ Un for each
n, (2) p ∈ intVn for every n, and (3) ∩Vn = {p}. The
pseudocircle P is an invariant set of H without fixed points, the
pseudoarcs H i (A) belong to different composants of P for
different i ∈ Z. In particular H i (A)∩H j(A) = ∅ for i 6= j , hence
we may assume that for |i | ≤ 3n the sets H i (Un) are pairwise
disjoint. Furthermore, we may assume that diamH i (Vn) < 1

n+1
for |i | ≤ 3n. Since the pseudoarc A can be chosen to be
arbitrarily small, we may assume that V0 = U0. Let E0 = {V0}.
Take any k1 > 2 and let M1 : T2 → T2 be a homeomorphism
such that M1|U1 is a homeomorphism between U1 and Vk1 and
M1|T2\intU0

= id. Require additionally that M1(p) = p.
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Main Theorem

Theorem

There exists a continuous surjection G : A→ A with an
invariant pseudocircle P ⊂ A such that (G ,P) is minimal but is
not one-to-one.
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